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A Collocation Method 
for Two-Point Boundary Value Problems* 

By J. H. Ahlberg and T. Ito 

Abstract. This article is concerned with the use of collocation by splines to 
numerically solve two-point boundary value problems. The problem is analyzed in 
terms of cubic splines first and then extended to the use of quintic and septic splines. 
Consideration is given both to convergences as the mesh is refined and to the band- 
width of the matrices involved. Comparisons are made to a similar approach using 
the Galerkin method rather than collocation. 

1. Introduction. Given a two-point boundary value problem 

(1.1l ) ( Lu)(X) = p(x)u"(x) + q(x)u'(x) + r(x)u(x) = f (x, u) in (0, 1), 

(1.2) u(O) = u(l) = 0, 

with sufficiently smooth coefficient functions p, q and r and the forcing function f, 
we attempt to solve it numerically by a collocation method using spline functions of 
degrees three, five and seven. Collocation schemes for such a problem have been an- 
alyzed by some Russian authors who used ordinary polynomials for approximating 
functions [11], [12], [14], [15]; and more recently, spline functions were introduced 
with more desirable results [1] -[3], [7] -[10]. This paper introduces yet another 
variation of the method, especially in the treatment of boundary conditions for the 
approximating splines, and the analysis is much more straightforward than [7], [9]. 
Working equations are also described for immediate application. 

As is well known, the more general boundary condition, 

(1.3) u(O) = a, u(1) = b, 

can be transformed to the homogeneous case (1.2) by setting U(x) = u(x) - a(1 - x) - 

bx; and the analysis here is not affected by the new forcing function. 

2. Cubic Splines. We first impose a uniform partition on the interval [0, 1] as 

(2.1) xi = ih (i = 0, 1, . ..,n + 1) where h = 1/(n + 1); 

then the cubic B-splines of Schoenberg are 
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762 J. H. AHLBERG AND T. ITO 

(x -xi2)3 [Xi-2'Xi-11' 

h3 + 3h2(x-x_ 1) + 3h(x -xi_1)2 - 3(x -x i_1)3 

[xi- 1 XJ], 

(22) Bp(x) = h3 + 3h2(xi+ 1 -x) + 3h(x.+ 1 - x)2 - 3(x.+1 -x)3 

[xiXi+, x1], 

(Xi+2-X)3 [Xi+ 1 Xi+2], 

0 elsewhere, 

(i = - 1, O, . . . , n + 2) 

where subintervals are extended to the outside of [0, 1] with the same mesh size h. 
Here we modify these functions in order to accomodate the zero boundary condition 
at x = 0 and x = 1 as 

B (x) =B0(x)-4B_1(x), B (x) =B (x) -Bn2(x), 

(2.3) B B(x) =B ()B 1x), B +1X) = nlx) 4Bn () 

BiB(x) = Bi(x) (i = 2, . * * , n - 1), 

then we obtain a basis {B.(x)} in+ o1 for the space of cubic splines that automatically 
satisfies the boundary condition (1.2). 

Now we assume that the coefficient functions p, q and r together with the 
forcing term f are smooth enough so that we have a unique solution u(x) of the prob- 
lems (1.1)-(1.2). We let 

n+1 
(2.4) u(x)= E c.Bi(x) 

i=o 

be the cubic spline of interpolation to the true solution u(x) where c-i's are constants. 
We also consider another spline function, 

n+ 1 
(2.5) ux) = c 

i=O 

where constants c 's are to be determined by the following collocation conditions, 

(2.6) L-u(xi) = f(xi, u (xi)) (i = O, 1, ... , n + 1)- 

Explicitly, these are 

(2.7.1) 2-[-36co] +h [12c + 6c1] =f (x =xO), 

- [6c._1 - 12c. + 6ci+.1 +? [ ? 3ci- + 3ci+'1 
(2.7.)h 

(2.7.2) ? 
r 

? 
4c. 

? 
c1] 

f 
(x =x 

i , . i) 
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p ~~~q 
(2.7.3) h2 [- 36c n+1 +h- [-6c n - l2cn+1] =f (X =X nf 

Collecting these equations, we obtain 

(2.8) Ac = f(c) 

where A is an (n + 2) by (n + 2) matrix, c is an (n + 2)-dimensional vector with 

components ci and f(c) is the right-hand side vector of dimension (n + 2). 
We now examine the property of the matrix A to establish a convergence result 

later. From (2.7.2) we notice, for a sufficiently small h, the coefficient of ci domin- 

ates others in absolute value if p(xi)r(xi) < 0 since 

-l2p 6p 3q 6p 3q 
|h + 4r + r + ? + - - ? r 

h (h2 ) {(h2 h r)2 (h2 

(2.9)~ ~ ~ 12 ,) =r - 6r > Oq (i r(i > 0), q 
h2 h h2 h ) 2 h 

(2.9) -6r >O (if p(x1) >O), 

-(s 4r) + $(f? Lr) ?QP?r) 

-6r > 0 (if p(x1) < 0). 

From (2.7.1) we have 

(2.10) |-36p 12q 6q 

th2h h > 

for a sufficiently small h, and also the positive quantity on the left-hand side is 

O(h-2). Naturally, the similar results hold for the last equation (2.7.3). At these 

endpoints we need no restriction on the sign of p(x) or r(x). Thus we can conclude 

that the matrix A in (2.8) is diagonally dominant if h is sufficiently small, and 

p(x,)r(x,) < O (i = 1, 2, ... ., n), 

which is automatically satisfied if 

(2.11) p(x)r(x) < 0, x E (0, 1); 

moreover, 

(2.12) L4 11 < K 00 6min< J<r (x.) I 

Now consider the quantities LU(xi) (i = 0, 1, . . . , n + 1). If we let O(hd) 

(d > 2) be the order of convergence of the interpolating spline u-, i.e., lIu - U-11. = 

O(hd),** then we have IILu - Lu-llo. = O(hd-2) where 11 ILI. indicates the maximum 

**For d = 2, the rate of convergence is in terms of the modulus of continuity of u"(x). 
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norm in [0, 1] , since L is a linear second-order differential operator. At the mesh 
points, in particular, we write 

(L)Xx1) = f(xi, u(x1)) ? g(x1) (i = 0, 1, . . . , n + 1) 

where g(x) is an error function with the order of magnitude O(hd -2). In the matrix 
form, this becomes 

(2.13) Ac = f(c) + g 

where A is the same matrix as in (2.8), c is the (n + 2)-dimensional vector with com- 
ponents c-, f(c) and g are right-hand side vectors of dimension (n + 2) with components 

f(xi, U(xi)) and g(xi), respectively. 
With these preliminary results, we can proceed to analyze the convergence be- 

havior of the collocating spline u(x) to the true solution u(x) as the mesh size h ap- 
proaches zero. At this point we assume that h is small enough so that both of the 
nonlinear systems of equations (2.8) and (2.13) have unique solutions. We note that 
the degree of nonlinearity in these equations decreases as we take a smaller mesh size. 
We also assume a Lipschitz condition on the forcing function: 

(2.14) If(x, u1) -f(x, u2)1 ? LIul - u21 for all x E [0, 1] 

where the constant L is independent of x. 
Let e =(e0, e1, * * * , en+i)T, where ei = ci (O S i < n + 1). Then sub- 

tracting (2.8) from (2.13), we have 

(2.15) Ae = g + f(C) - f(c), 

and by the Lipschitz condition (2.14), 

f(xi, U(xi)) -f(x,, UW(xi)) = Liu(xi) - u(xi)] 

= L.{e.1 + 4e? + e+1} (1 i S n) 

0 (i=Oorn + 1) 

for some constants Li where ILiI S L (O S i S n + 1). The second equality above 
is derived using the property of the basis functions. Now we can rewrite (2.15) as 

(2.16) Ae = g + LMe 

whereL =Diag{L0, L1, . Ln+1 

0 
141 14 1 

1 4 1 
M=* . 

1 4 1 . 
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Hence e = A g + AL- LMe when A- 1 exists and is bounded as in (2.12), so that 

(2.17) Ilell < Kllgllo, + 6KLlleIll,, = O(hd-2) + 6KLIleII., 

where K is a bound on IIA-1II,,l and IIM1I,., = 6. Thus if 

(2.18) 1 - 6KL > 0, 

we have llell, = 0(hd-2). This, in tum, means 

xeYikt i(X) - -(X)= 0(hd - 2), 

since at any point x E [0, 1], the values u(x) and i-(x) are determined by only a finite 
number of coefficients {ci} and {ci} due to the minimal support of B-splines. Because 
we already assumed Dlu - U-11 = 0(hd), we have 

IIU -UIII < IIU - -I + lu- - UI11 = 0(hd-2). 

Thus we have proved the following theorem. 
ThEOREM. Let a two-point boundary value problem have the form (1.1)-(1.2) 

where the coefficient functions p(x) and r(x) and the forcing function f(x, u) satisfy 
the conditions (2.11), (2.14), and (2.18). Let iu(x) be the collocating approximate 
solution in (2.5) where the coefficients are defined by (2.8). If the true solution u(x) 
of (1.1)-(1.2) is smooth enough so that the cubic spline function u-(x) interpolating 
to u(x) converges to u(x) in the order of O(hd), then iu(x) converges to u(x) in the 
order of 0(hd-2) in the maximum norm over [0, 1]. 

For a linear problem, i.e. when the forcing term is a function of x alone, the 
Iipschitz constant L and the associated matrix L become zero; and we have instead 
of (2.17) 

egHNhd2). 
6 min V <I(xj)l 

This error estimate holds when r(x) is bounded away from zero on (0, 1). 
If we assume p(x), q(x), r(x) and f(x, y) for a fixed y are all c2 [0, 1] func- 

tions, then the solution u(x) is C4 [0, 1]. In such a case the cubic spline of inter- 
polation ii(x) converges to u(x) in the order of 0(h4); i.e. d = 4 in the theorem, hence 
our collocating spline function converges to u(x) in the order of 0(h2). 

Similarly if u(x) E K4 [0, 1] where K' denotes the collection of all real-valued 
functions u(x) defined on [0, 1] such that u E C'm- [0, 1] and such that u(m - 1)(x) 
is absolutely continuous, then d = 3? [13], so the order of convergence of the col- 
locating spline function is 3/2. 

3. Quintic Splines. The analysis here proceeds exactly as in the cubic case except 
for some minor modifications to incorporate the added degrees of polynomials. With 
the uniform mesh of (2.1), we have the quintic B-splines of Schoenberg 
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(x -x i_3)5 [Xi_3, Xi-2],' 

(x-xi3)5 -6(x-xi-2) ( [Xi 2,xi-l' 

(x1-3 - X)5 - 6(x - Xi_2 )5 + 15(x - Xi_ 1)5 [xi- 1' Xi] 

(-)Bi(X) = S (Xi+ 3 -X - (+-X)+ 5X+ 2l-) [X il Xi+ X ],1 

(Xi+ 3 -X)5 - 6(x+ 2 -X)5 [Xi+ 1' Xi+ 2 

(Xi+3 -X)5 [Xi+2, Xi+3] 

0 elsewhere, 

(i=2, -1, . .. , n + 3), 

where subintervals are extended to outside of [0, 1] with the same mesh size h. If 
we modify {B;(x)} In+ to 

B1 B - 26B B = B - B 1 1 2' n-1 n-1 n + 3' 

Bo =Bo -66B-2 5 Bn = Bn-B n+2' 

(3.2) B= B- B_l, B+ 1 =Bn+1-66Bn+3' 

B =B -B B =B - 26B 2 2 -2' n+2 n+2 n+3' 

B. =B (3<i An- 2), 

we obtain a basis {B1(x)} Lnt+2 for the space of quintic splines that satisfy the homo- 
geneous boundary condition (1.2). 

We let 
n+2 

(3u3)= E IB.(x) 

be the quintic spline of interpolation to the true solution u(x) of our original problem 
(1.1)-(1.2), where c-i's are constants. Henceforth we consider a linear equation 
(Lu)(x) = f(x) for simplicity, although a mildly nonlinear case of (1.1) can be treated 
as in Section 2. We also consider another spline function, 

n + 2 
(3.4) u(x) = Bi(X), 

where constants ce's are to be determined by the following conditions, 

(3.5) LIu(x1) =f(xi) (i = 0, 1, ... , n + 1), 

(3.6) h -dx (Lu ) = h -dx at x = 0, 1. 

At the points near xo = 0, the collocation condition (3.5) takes the form 

p(xh) [- 480c - 1440c 
h 2 -1 40c0 

(3.7.0) q(xo) ? h [80c_1 + 330c0 + lOOc1 + lOc2] f(xO), 
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h [20c1 ? 40c - 140c1 + 40c2 + 20c3] 

(3.7.1) q(xl) 
? h- [-5c1 - 50co + 5c1 + 5Oc2 + 5c3] 

? r(x1)[c_l + 26co + 65c1 + 26C2 + c3] =f(xl), 

and the boundary condition (3.6) becomes 

p2 [1680c_ 1 3960c0 - 240c1 + 120c2] 

(3.7.2) p'(x0) 
+ q(xo) [- 480c - 1440c 

+ (q'(xo) + r(xo)) [80c_ 1 + 330co + I 00c 1 + 1 Oc2] = h f '(xo). 

The condition at x1 (i = n, n + 1) can be similarly expressed. At each inner mesh 

point xi (2 < i < n - 1), (3.5) becomes 

p(x.) 
h2 [20ci2 + 40ci-1 - 120c, + 40ci+1 + 20ci+2] 

(3.7.3) ?h 5ci- 2 - 50cic 1 + 50ci+ 1 + 5c i+2] 

+ r(x,)[ci2 + 26c1 + 66c+ 26ci++ ci+2? 

=f(xj) = 2, 3, .. . ,n -1). 

Collecting (3.7.0)-(3.7.3) and three other conditions near x = 1 similar to 

(3.7.0)-(3.7.2), we obtain 

(3.8) Ac = f 

where A is an (n + 4) by (n + 4) matrix, c is an (n + 4)-dimensional vector with 

components ci and f is also an (n + 4)-dimensional vector resulting from the right-hand 
sides of (3.7.0)-(3.7.3). We must now examine the property of the matrix A so that 

we may solve the system of Eqs. (3.8) in practice. From (3.7.3) we notice, for a suf- 

ficiently small h, the coefficient of c1 dominates others in absolute value if 

p(xj)r(x1) < 0 since 

- 12Op +6 2Op 5q 40p 50q I 
? 66r --?r ? 2 ? ~ 26r1 

h2 h2 h h2 h 

(3.9) ? ~~40p S Oq ? 20p 5 
(3-9 + |- - + 26r| + | p-h+ rl 

h2 h ?61 h2 h 

t-120r>0 ifp>O,r<0, 

( 120r>0 ifp<0,r>O. 
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From (3.7.0) we have 

(3.1 0) c- l 480p ? 80qh [(1440p - 330qh)co - 100qhcl - lOqhc2 + h 2f] 

=- 3co + 0(h). 

Now we can replace c_ 1 in (3.7.1)-(3.7.2) by the right-hand side of (3.10), and the 
coefficients of c1 and c0, respectively, dominate others in the sense of (3.9). Here 
we need no restriction on the sign of p(x) or r(x). Thus we know the system (3.8) 
has a unique solution c by the diagonal dominance property and 

(3.11) 1L41 Il~~ 0 120 min2<< -rx)l 

This guarantees that our approximating solution ui in (3.4) exists uniquely. 
The next step is to show that iu is close to the true solution u. If we let 0(hd) 

be the order of convergence of the interpolating quintic spline u-, i.e. 

(3.12) IU - il 0 = 0(hd), 

we have 

(3.13) IILu - Lu 1II0 =0(hd-2) and Ih d-(Lu)-h$ d(Lu)uII = 0(hd-2) 

where 11 I-Io indicates the maximum norm in [0, 1]. If we apply the conditions 
(3.5)-(3.6) to u-(x), instead of 'u, we have 

(3.14) A-c=f +g 

where A and f are the same quantities as in (3.8), c is the counterpart of c in (3.8), 
and g is a vector whose components are of the order 0(hd-2) by (3.13). So from 
(3.8) and (3.14), we have 

(3.15) Ilc - c 1100 = IIA- 1gI110 < IIA- 1 11Ig . lg11 = 0(hd-2) 

if r(x) is bounded away from zero. This implies 

(3.16) IIU U- = |II(ciiB - IIB| ? IIC lC- I IBiII| 0(h2 ), 

since each Bi(x) has the support [(i - 3)h, (i + 3)h], except for i near endpoints 
where the support is a little larger, and the value of Bi(x) is bounded for any h. Thus 
by (3.12) and (3.16) we have 

(3.17) Ilu - u11 < llu - uhI + IIu - u 11 = 0(hd-2), 

which gives the convergence rate for our collocating splines. For example, for the case 
of u E K26[0, 1], we have d = 6 - 'h = 5?h [13] and 

(3.17)' Ilu - ui1il = 0(h 31/2). 

4. Septic Splines. The analysis here is again similar to the preceding ones, and 
we still restrict ourselves to a linear boundary value problem as in Section 3. With 
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the uniform mesh of (2.1), the septic B-splines of Schoenberg are 

( (xi-Xi4)7 [Xi-4,Xi-3]' 

(x - xi.4)7 - 8(x -x 3)7 [Xi. 3,'xi 21' 

(x -x xi-4)7 - 8(x -Xi-3 )7 + 28(x - Xi-2 )7 [XI-2,Xi- 1 ] 

(x-x.i4)7-8(x-xi. 3) 

+ 28(x -x )7 - 56(x -Xi_ 1)7 [Xi-. X' 

(4.1) B (x) =7 (Xi+ -x)7 -8(xi+3 -x)7 

+ 28(X+2 - X)7 -56(xi+ 1-X)7 [Xi, Xi+ 1 

(Xi+4 -X)7 - 8(x+ 3 -X)7 + 28(x+ 2 -X)7 [Xi+ 1 Xi+ 2] 

(Xi+4 - X)7 - 8(x1+ 3 - X)7 [Xi.+2 Xi+ 3] 

(Xi+4 X)7 [Xi+3, xi+4], 

0 elsewhere, 

(i=-3,-2,.. .,n +4). 
We again modify {fBl(x)}i 2+3 so that the homogeneous boundary condition (1.2) is 
automatically satisfi1ed as 

B.2 =B2 -120B ~~ ~-3 

B_ 1 = B_1 - 1191B_-3, 

B =B -2416B 0 0 -3' 

(4.2) SNB1 =B1 -B_ 

B2 =B2 -B-2' 

I 3=B3 -B_3' 

Bi.=Bi (4<i<n-3) 

and similarly for {Bi(x)}J3n2. In order to determine the coefficients ci's in u = 

2cABi(x), we need an extra condition besides (3.5)-(3.6), which we set 

(4 3) h~~~2. d2 (L 2 d2f 
dx2d 

For points {Xi}7-?32, the collocation condition (3.5) takes the form 

p(x.) 
h2 [42c.3 + 1008c + 630c - 3360c. + 630c. + 1008c + 42c. 31 h2 i-3 ~i-2 I-ii+1 i+2 i+3 

+ q(i [-7ci3 - 392c. 2 - 1715c11 + 1715c.+1 + 392c1+2 + 7ci+3] 

+ r(x.)[Ci-3 + 120ci-_2 + 119 1lc_i + 2416ci + 1191c.+1 + 120ci+2 + C ] 

i+3 

-E 
a.C. = 

f(x3) 
(3 < i < n - 2). 
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We again have the coefficient of ci dominating others in absolute value, as in (3.9), if 

p(xi)r(xi) < 0 since 

(4.4) $-5040r(x,) > 0 if p(xi) > 0, r(x1) < 0, 

(4-4) li l ' ' s5040r(x1) > 0 if p(x1) < 0, r(x1) > 0. 

At x = x2, and similarly at x = xni the collocation condition is 

p(2 [42c_) + 1008co + 588c1 - 3360c2 + 630c3 + 1008c4 + 42c5] 

(45) +? q(X2) 1 3 4+7c51 (4.5) +h [-7c - 392c - 1708cl + 1715c3 + 392c4 + 7c5 

+ r(x2)[c- + 120c0 + 1190c1 + 2416c2 + 1191c3 + 120c4 + c5] 

=f(X2), 

and the coefficient of c2 is dominant by a quantity of order O(h-2). Also, at x = x 
and at x = xn,, the situation is similar since 

P(xi) [42c + 1008c + 630c - 4368c + 588c2 + 1008c3 + 42c41 
+2 q(21 oi0- 3 1 2 3 +7c1 

(. h [-7c_2 - 392c-1 - 1715co + 392cl + 1722c2 + 392c3 + 7c J 
(4.6) 

+ r(xl)[C_2 + 120c_1 + 1191co + 2296c1 + 1190c2 + 120c3 + c4] 

=f(x1). 

The collocation condition x = xo and two other conditions (3.6) and (4.3) must 
be treated in a modified manner as before. The collocation equation is 

p(x0) -402 
h2 [-4,032c_2 - 49,392c_ - 104,832co1 

(4.7) q(xo) 
+h [448c2 + 6,622c_ + 16,912c0 + 3,430c + 784c + 14c 

=f(xo), 

and (3.6) and (4.3) are, respectively, 

p(x2) [23,520c_2 + 254,100c_ + 507,360co - 7,980c_l + 3,360c2 + 420c3] 

+ p q [-4,032c - 49,392c1 - 104,832co1 
(4.8) 

+ (q' + r)[448c2 + 6,622c_l + 16,912co + 3,430cl + 784c2 + 14c31 

= h *f (x )) 
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h 2 [- 100,800c2 - 1,008,000cl -2,016,000co] 

2p' +q 
+ h [23,520c2 + 254,100c 1 + 507,360c0 - 7,980c1 

(4.9) + 3,360c2 + 420c3] 

+ (p" + 2q' + r)[-4,032c_2 - 49,392c, 1 - 104,832co] 

+ h - (q" + 2r') [448c 2 + 6,622c 1 + 16,912c + 3,430c1 
2 ~~ ~~~~0 

+ 784c2 + 14c3] 

= h2 f "(Xo). 

From (4.7) and (4.9), we can express c_ 2 and c_ 1 in terms of co for a sufficiently 

small h, since the matrix, 

( -4,032 -49,392 - 104,832\ 

-100,800 -1,008,000 -2,0165000/ 

is of rank 2. So we can insert these expressions into (4.8), and it turns out that we 
have an equation dominant in the coefficient of co for a sufficiently small h. The rest 
of the analysis is exactly the same as in the quintic case, and we have a unique approxi- 
mating spline iu(x) with the rate of convergence, 

(4.10) II u - u llo = 0(hd -2); 

or for the case of u E K2 [0, 1], d becomes 7h [13] and 

(4.10)' Ilu - uII = O(hsl/2). 

5. Numerical Examples. In this section results of some numerical examples are 

shown. All computations of the collocation method were done on the Hewlett-Packard 

3000 at the Lafayette College computing center using BASIC single-precision mode. 

Some numerical comparisons were also made at United Aircraft Research Laboratories 

in 1966-1967, which indicated that accuracy-wise the collocation using cubic splines 

compared favorably to the finite difference method. Similar results were witnessed in 

more difficult two-dimensional elliptic problems [5]. 
Example 1. A simple linear problem, 

(5.1) u" - lOOu = 0, u(O) 
= u(l) = 1, 

is solved by our collocation scheme. This problem appears in [2, p. 55] and also in 

[10], and the exact solution is given by 

u(x) = cosh(10(x - ?))/cosh 5. 

Error is computed at nineteen interior points uniformly spaced in (0, 1), rather than 

checking all the intermediate values, and maximum is taken over all such points. In 
the tables to follow, 1.32 - n means 1.32 x 10-n . The columns entitled a indicate 
the quantities, 



772 J. H. AHLBERG AND T. ITO 

/lu -u 1Imax\ 
In 1 ln(h 1 /h2), 

\lu u 1Imax / h2/ 
which give an estimate on the exponent of h for our error formula. The result (see 
Table 1) confirms the theory developed in this present article; i.e. the rate of conver- 
gence is 

TABLE 1 

Colloc.-Cubic Colloc.-Quintic Colloc.-Septic 
h 

max I error a. max I error ao max I error at 

1/5 1.00-1 --- 7.88-3 --- 4.60-4 --- 

1/10 1.69 - 2 2.71 2.91 - 4 4.76 4.47 - 6 6.66 

1/15 7.30 - 3 2.07 4.87 - 5 4.41 

1/20 3.93 - 3 2.15 1.53 - 5 4.03 

close to 0(h2), 0(h4), and 0(h6), respectively, for the cubic, quintic, and septic case, 
and the maximum error for each fixed step size h decreases significantly as the degree 
of spline polynomial increases. 

Example 2. Another linear problem is 

(5.2) u"=4u +4cosh 1, u(0)=u(1)=0, 

which is treated in [4], [7], [9] comparing the results of various numerical methods. 
The exact solution is 

u(x) = cosh(2x - 1) - cosh 1 

which is symmetric at x = ? as in Example 1. We also note that the condition (2.11) 
is trivially satisfied as it is in Example 1. The result (Table 2.1) again shows consistent 
increase in accuracy as h is decreased, the order of error being close to 0(h4). The 
last column of Table 2.1 is obtained by the Galerkin method using cubic splines [4], 
which has the same order of accuracy and a slightly larger bandwidth of the matrix 
than our quintic spline collocation scheme (see Section 6). The collocation scheme 
is seen to give three to five times more accurate solutions in this particular problem. 

TABLE 2.1 

Colloc.-Cubic Colloc.-Quintic h max I error 1 a max I error a Colloc.Septic Galerkin-Cfbic 

1/3 1.53 - 2 - - - 1.01 - 4 --- 1.18-6 

1/5 5.23 - 3 2.09 1.34- 5 3.95 4.23 - 5 

1/7 2.63 - 3 2.05 3.44- 6 4.05 1.71 - 5 

1/9 1.58 - 3 2.03 1.22 - 6 4.13 5.80- 6 

(*): Table 3.4 of [4]. 
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TABLE 2.2 

h Colloc.-Quintic Collatz [9] Bramble-Hubbard [9] Numerov [9] 

1/5 1.34 - 5 2.56 - 5 2.06 - 3 3.88 - 5 

1/10 7.73 - 7 1.65 - 6 1.64 - 4 4.83 - 6 

TABLE 3 

Coiloc.-Cubic Colloc.-Quintic 
h Colloc.-Septic Galerkin-Cubic* 

maxierrort a maxierrorl Ia 

1/3 9.59 - 4 - - - 5.89 - 6 --- 9.07 - 8 

1/4 5.20 - 4 2.13 1.92 - 6 3.89 9.16 - 6 

1/6 2.29 - 4 2.02 3.79 - 7 4.00 1.72 - 6 

1/8 1.28 - 4 2.02 1.23 - 7 3.91 7.71 - 7 

(*): Table 1.4 of [4]. 

Comparison is also made between the quintic collocation computations and some dis- 

ctete methods having the same order of convergence (Table 2.2). These methods are 

Collatz's Mehrstellenverfahren, the Bramble and Hubbard five-point scheme, and 

Numerov's scheme which are all referred to in [9]. Our method again compares favor- 

ably. 
Example 3. Now we turn to a nonlinear problem 

(5.3) u" = exp(u), u(0) = u(l) = 0, 

which has the unique solution [4], [7], [9] 

u(x) = In 2 + 2 In - sec ( )], c = 1.3360556949. 

In this problem the key hypothesis in our proof (2.18) is not satisfied since K= + oo. 

We may circumvent this difficulty by changing (5.3) to an equivalent form, 

(5.4) u" - u = f(x, u) = eu - u; 

since, then we can find the Lipschitz constant L < 0.11 in (2.14) and all the conditions 
in the Theorem in Section 2 are satisfied. It is interesting to note, however, that in all 

the computations we experimented, we had no difficulty in solving (5.3) directly by 

our collocation scheme, and they rendered exactly the same result as the modified form 

(5.4). This partially supports our conjecture that collocation often works even when 

rigorous proofs are unavailable. The computational results are summarized in Table 3 

which are similar to Example 2. To solve the nonlinear system of Eqs. (2.8), we used 

Newton's method and terminated the iteration when the successive iterates c(k) satis- 
fied the following criterion 
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maxIc(k+l) - ck)I ?1-6 -hi ma 
11 

where 

2 (cubic case) 

i = 4 (quintic case) 

6 (septic case). 

In all the computations performed, the method converged after two to four iterations. 
Example 4. Our final example is also a nonlinear problem [41 

(5.5) u' /2(u + x + 1)3, u(O) = u(1) = 0, 

whose exact solution is 

u(x) = 2/(2 -x) -x -1. 

We may modify (5.5) to 

U- 1U = 1/2(U + X + 1)3 - IOU 

in order to satisfy the condition (2.8), although they both gave equivalent results 
computationally. The same approach was taken to solve the nonlinear system as in 
Example 3 (Table 4). 

TABLE 4 

h Colloc.-Cubic Colloc.-Quintic Colloc.-Septic Galerkin-Cubic* 
max I error I et maxl Ierror I ac max I error I or 

1/4 5.04-3 --- 9.91-5 --- 3.31-6 --- 9.10- 5 
1/6 2.13 - 3 2.12 1.56 - 5 4.57 2.40 - 7 6.48 2.68 - 5 
1/8 1.18 - 3 2.05 5.24 - 6 3.79 7.96 - 6 

(*): Table 2.5 of [4]. 

6. Discussion. Numerical methods for solving two-point boundary value problems 
are considered thoroughly in Keller [6]. Among these methods are the shooting method, 
the well-known finite-difference method, and the integral equation method. Aside from 
these classical approaches there is another important class of numerical schemes, which 
Keller calls the function space approximation methods, that includes the Rayleigh-Ritz- 
Galerkin method and the collocation method. The former of these two has been 
studied rigorously in the past several years, especially in connection with spline-type 
function spaces [4], [16]. 

The most significant virtue of the collocation procedure is its ease in application; 
e.g. matrix elements of the defining equation are evaluated directly, rather than by 
numerical integration as in the Galerkin method, and the bandwidth of the matrix A 
is smaller than that of the Galerkin method when the same degree splines are used. 
For the collocation method, the number of nonzero terms in a row of A is equal to the 
number of nonzero basis functions at the corresponding mesh point, and we have the 



A COLLOCATION METHOD 775 

bandwidths 1, 2, and 3, respectively, for the cubic, the quintic, and the septic cases. 
In the Galerkin method, however, we must integrate the products of basis functions to 
compute elements of the defining matrix. So if we were to use the same spline func- 
tions which appear in the present paper, the bandwidths become 3, 5, and 7, respectively. 
In general, polynomial splines of odd degree 2n + 1 render the bandwidth of n in the 
case of collocation as compared to 2n + 1 for the Galerkin case. Thus we see that the 
higher-order convergence of the Galerkin method is obtained at the expense of higher- 
order computational complexity. 

Finally we remark that extensions of the present scheme are possible in several 
directions. As noted at the beginning of Section 3, the mildly nonlinear problem 
(1.1)-(1.2) may be treated for the quintic and the septic case. Some other possible 
extensions are: use of higher degree splines, treatment of higher-order differential 
equations and partial differential equations. Some of these problems are treated in the 
references cited in Section 1, though their theoretical justifications are more difficult 
than the present argument. For two-dimensional elliptic problems, we mention the 
work of one of the authors [5]. In practical computations, however, it has been our 
experience that a collocation scheme such as the one discussed here may be applied 
to a wide variety of problems with satisfactory results, even when its convergence 
cannot be proved rigorously (see Section 5). 
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